
A Manual for the Plan 9 assembler

Rob Pike

rob@plan9.bell-labs.com

Machines

There is an assembler for each of the MIPS, SPARC, Intel 386, AMD64, Power PC,
and ARM. The 68020 assembler, 2a, (no longer distributed) is the oldest and in many
ways the prototype. The assemblers are really just variations of a single program: they
share many properties such as left-to-right assignment order for instruction operands
and the synthesis of macro instructions such as MΧVE to hide the peculiarities of the
load and store structure of the machines. To keep things concrete, the first part of this
manual is specifically about the 68020. At the end is a description of the differences
among the other assemblers.

The document, ��How to Use the Plan 9 C Compiler��, by Rob Pike, is a prerequisite
for this manual.

Registers

All pre-defined symbols in the assembler are upper-case. Data registers are R0
through R7; address registers are A0 through A7; floating-point registers are F0
through F7.

A pointer in A6 is used by the C compiler to point to data, enabling short
addresses to be used more often. The value of A6 is constant and must be set during C
program initialization to the address of the externally-defined symbol a6base.

The following hardware registers are defined in the assembler; their meaning
should be obvious given a 68020 manual: CAAR, CACR, CCR, DFC, ISP, MSP, SFC,
SR, USP, and VBR.

The assembler also defines several pseudo-registers that manipulate the stack:
FP, SP, and TΧS. FP is the frame pointer, so 0(FP) is the first argument, 4(FP) is
the second, and so on. SP is the local stack pointer, where automatic variables are held
(SP is a pseudo-register only on the 68020); 0(SP) is the first automatic, and so on as
with FP. Finally, TΧS is the top-of-stack register, used for pushing parameters to pro
cedures, saving temporary values, and so on.

The assembler and loader track these pseudo-registers so the above statements
are true regardless of what has been pushed on the hardware stack, pointed to by A7.
The name A7 refers to the hardware stack pointer, but beware of mixed use of A7 and
the above stack-related pseudo-registers, which will cause trouble. Note, too, that the
PEA instruction is observed by the loader to alter SP and thus will insert a correspond
ing pop before all returns. The assembler accepts a label-like name to be attached to
FP and SP uses, such as p+0(FP), to help document that p is the first argument to a
routine. The name goes in the symbol table but has no significance to the result of the
program.

 2

Referring to data

All external references must be made relative to some pseudo-register, either PC
(the virtual program counter) or SB (the ��static base�� register). PC counts instructions,
not bytes of data. For example, to branch to the second following instruction, that is, to
skip one instruction, one may write

BRA 2(PC)

Labels are also allowed, as in

BRA return
NΧP

return:
RTS

When using labels, there is no (PC) annotation.

The pseudo-register SB refers to the beginning of the address space of the pro
gram. Thus, references to global data and procedures are written as offsets to SB, as in

MΧVL $array(SB), TΧS

to push the address of a global array on the stack, or

MΧVL array+4(SB), TΧS

to push the second (4-byte) element of the array. Note the use of an offset; the com
plete list of addressing modes is given below. Similarly, subroutine calls must use SB:

BSR exit(SB)

File-static variables have syntax

local<>+4(SB)

The <> will be filled in at load time by a unique integer.

When a program starts, it must execute

MΧVL $a6base(SB), A6

before accessing any global data. (On machines such as the MIPS and SPARC that can
not load a register in a single instruction, constants are loaded through the static base
register. The loader recognizes code that initializes the static base register and treats it
specially. You must be careful, however, not to load large constants on such machines
when the static base register is not set up, such as early in interrupt routines.)

Expressions

Expressions are mostly what one might expect. Where an offset or a constant is
expected, a primary expression with unary operators is allowed. A general C constant
expression is allowed in parentheses.

Source files are preprocessed exactly as in the C compiler, so #define and
#include work.

Addressing modes

The simple addressing modes are shared by all the assemblers. Here, for com
pleteness, follows a table of all the 68020 addressing modes, since that machine has
the richest set. In the table, o is an offset, which if zero may be elided, and d is a dis
placement, which is a constant between -128 and 127 inclusive. Many of the modes
listed have the same name; scrutiny of the format will show what default is being
applied. For instance, indexed mode with no address register supplied operates as
though a zero-valued register were used. For "offset" read "displacement." For ".s"
read one of .L, or .W followed by *1, *2, *4, or *8 to indicate the size and scaling of

 3

the data.

data register R0
address register A0
floating-point register F0
special names CAAR, CACR, etc.
constant $con
floating point constant $fcon
external symbol name+o(SB)
local symbol name<>+o(SB)
automatic symbol name+o(SP)
argument name+o(FP)
address of external $name+o(SB)
address of local $name<>+o(SB)
indirect post-increment (A0)+
indirect pre-decrement -(A0)
indirect with offset o(A0)
indexed with offset o()(R0.s)
indexed with offset o(A0)(R0.s)
external indexed name+o(SB)(R0.s)
local indexed name<>+o(SB)(R0.s)
automatic indexed name+o(SP)(R0.s)
parameter indexed name+o(FP)(R0.s)
offset indirect post-indexed d(o())(R0.s)
offset indirect post-indexed d(o(A0))(R0.s)
external indirect post-indexed d(name+o(SB))(R0.s)
local indirect post-indexed d(name<>+o(SB))(R0.s)
automatic indirect post-indexed d(name+o(SP))(R0.s)
parameter indirect post-indexed d(name+o(FP))(R0.s)
offset indirect pre-indexed d(o()(R0.s))
offset indirect pre-indexed d(o(A0))
offset indirect pre-indexed d(o(A0)(R0.s))
external indirect pre-indexed d(name+o(SB))
external indirect pre-indexed d(name+o(SB)(R0.s))
local indirect pre-indexed d(name<>+o(SB))
local indirect pre-indexed d(name<>+o(SB)(R0.s))
automatic indirect pre-indexed d(name+o(SP))
automatic indirect pre-indexed d(name+o(SP)(R0.s))
parameter indirect pre-indexed d(name+o(FP))
parameter indirect pre-indexed d(name+o(FP)(R0.s))

Laying down data

Placing data in the instruction stream, say for interrupt vectors, is easy: the
pseudo-instructions LΧNG and WΧRD (but not BYTE) lay down the value of their single
argument, of the appropriate size, as if it were an instruction:

LΧNG $12345

places the long 12345 (base 10) in the instruction stream. (On most machines, the only
such operator is WΧRD and it lays down 32-bit quantities. The 386 has all three: LΧNG,
WΧRD, and BYTE. The AMD64 adds QUAD to that for 64-bit values. The 960 has only
one, LΧNG.)

Placing information in the data section is more painful. The pseudo-instruction
DATA does the work, given two arguments: an address at which to place the item,
including its size, and the value to place there. For example, to define a character array

 4

array containing the characters abc and a terminating null:

DATA array+0(SB)/1, $'a'
DATA array+1(SB)/1, $'b'
DATA array+2(SB)/1, $'c'
GLΧBL array(SB), $4

or

DATA array+0(SB)/4, $"abc\z"
GLΧBL array(SB), $4

The /1 defines the number of bytes to define, GLΧBL makes the symbol global, and
the $4 says how many bytes the symbol occupies. Uninitialized data is zeroed automat
ically. The character \z is equivalent to the C \0. The string in a DATA statement may
contain a maximum of eight bytes; build larger strings piecewise. Two pseudo-
instructions, DYNT and INIT, allow the (obsolete) Alef compilers to build dynamic type
information during the load phase. The DYNT pseudo-instruction has two forms:

DYNT , ALEF_SI_5+0(SB)
DYNT ALEF_AS+0(SB), ALEF_SI_5+0(SB)

In the first form, DYNT defines the symbol to be a small unique integer constant, cho
sen by the loader, which is some multiple of the word size. In the second form, DYNT
defines the second symbol in the same way, places the address of the most recently
defined text symbol in the array specified by the first symbol at the index defined by the
value of the second symbol, and then adjusts the size of the array accordingly.

The INIT pseudo-instruction takes the same parameters as a DATA statement.
Its symbol is used as the base of an array and the data item is installed in the array at
the offset specified by the most recent DYNT pseudo-instruction. The size of the array
is adjusted accordingly. The DYNT and INIT pseudo-instructions are not implemented
on the 68020.

Defining a procedure

Entry points are defined by the pseudo-operation TEXT, which takes as arguments
the name of the procedure (including the ubiquitous (SB)) and the number of bytes of
automatic storage to pre-allocate on the stack, which will usually be zero when writing
assembly language programs. On machines with a link register, such as the MIPS and
SPARC, the special value -4 instructs the loader to generate no PC save and restore
instructions, even if the function is not a leaf. Here is a complete procedure that returns
the sum of its two arguments:

TEXT sum(SB), $0
MΧVL arg1+0(FP), R0
ADDL arg2+4(FP), R0
RTS

An optional middle argument to the TEXT pseudo-op is a bit field of options to the
loader. Setting the 1 bit suspends profiling the function when profiling is enabled for
the rest of the program. For example,

TEXT sum(SB), 1, $0
MΧVL arg1+0(FP), R0
ADDL arg2+4(FP), R0
RTS

will not be profiled; the first version above would be. Subroutines with peculiar state,
such as system call routines, should not be profiled.

 5

Setting the 2 bit allows multiple definitions of the same TEXT symbol in a pro
gram; the loader will place only one such function in the image. It was emitted only by
the Alef compilers.

Subroutines to be called from C should place their result in R0, even if it is an
address. Floating point values are returned in F0. Functions that return a structure to a
C program receive as their first argument the address of the location to store the result;
R0 is unused in the calling protocol for such procedures. A subroutine is responsible
for saving its own registers, and therefore is free to use any registers without saving
them (��caller saves��). A6 and A7 are the exceptions as described above.

When in doubt

If you get confused, try using the -S option to 2c and compiling a sample pro
gram. The standard output is valid input to the assembler.

Instructions

The instruction set of the assembler is not identical to that of the machine. It is
chosen to match what the compiler generates, augmented slightly by specific needs of
the operating system. For example, 2a does not distinguish between the various forms
of MΧVE instruction: move quick, move address, etc. Instead the context does the job.
For example,

MΧVL $1, R1
MΧVL A0, R2
MΧVW SR, R3

generates official MΧVEQ, MΧVEA, and MΧVESR instructions. A number of instructions
do not have the syntax necessary to specify their entire capabilities. Notable examples
are the bitfield instructions, the multiply and divide instructions, etc. For a complete set
of generated instruction names (in 2a notation, not Motorola�s) see the file
/sys/src/cmd/2c/2.out.h. Despite its name, this file contains an enumeration
of the instructions that appear in the intermediate files generated by the compiler,
which correspond exactly to lines of assembly language.

Laying down instructions

The loader modifies the code produced by the assembler and compiler. It folds
branches, copies short sequences of code to eliminate branches, and discards unreach
able code. The first instruction of every function is assumed to be reachable. The
pseudo-instruction NΧP, which you may see in compiler output, means no instruction at
all, rather than an instruction that does nothing. The loader discards all NΧP�s.

To generate a true NΧP instruction, or any other instruction not known to the
assembler, use a WΧRD pseudo-instruction. Such instructions on RISCs are not sched
uled by the loader and must have their delay slots filled manually.

MIPS

The registers are only addressed by number: R0 through R31. R29 is the stack
pointer; R30 is used as the static base pointer, the analogue of A6 on the 68020. Its
value is the address of the global symbol setR30(SB). The register holding returned
values from subroutines is R1. When a function is called, space for the first argument is
reserved at 0(FP) but in C (not Alef) the value is passed in R1 instead.

The loader uses R28 as a temporary. The system uses R26 and R27 as
interrupt-time temporaries. Therefore none of these registers should be used in user
code.

 6

The control registers are not known to the assembler. Instead they are numbered
registers M0, M1, etc. Use this trick to access, say, STATUS:

#define STATUS 12
MΧVW M(STATUS), R1

Floating point registers are called F0 through F31. By convention, F24 must be
initialized to the value 0.0, F26 to 0.5, F28 to 1.0, and F30 to 2.0; this is done by the
operating system.

The instructions and their syntax are different from those of the manufacturer�s
manual. There are no lui and kin; instead there are MΧVW (move word), MΧVH (move
halfword), and MΧVB (move byte) pseudo-instructions. If the operand is unsigned, the
instructions are MΧVHU and MΧVBU. The order of operands is from left to right in
dataflow order, just as on the 68020 but not as in MIPS documentation. This means that
the Bcond instructions are reversed with respect to the book; for example, a va BGTZ
generates a MIPS bltz instruction.

The assembler is for the R2000, R3000, and most of the R4000 and R6000 archi
tectures. It understands the 64-bit instructions MΧVV, MΧVVL, ADDV, ADDVU, SUBV,
SUBVU, MULV, MULVU, DIVV, DIVVU, SLLV, SRLV, and SRAV. The assembler does
not have any cache, load-linked, or store-conditional instructions.

Some assembler instructions are expanded into multiple instructions by the loader.
For example the loader may convert the load of a 32 bit constant into an lui followed
by an ori.

Assembler instructions should be laid out as if there were no load, branch, or float
ing point compare delay slots; the loader will rearrange�schedule�the instructions to
guarantee correctness and improve performance. The only exception is that the correct
scheduling of instructions that use control registers varies from model to model of
machine (and is often undocumented) so you should schedule such instructions by hand
to guarantee correct behavior. The loader generates

NΧR R0, R0, R0

when it needs a true no-op instruction. Use exactly this instruction when scheduling
code manually; the loader recognizes it and schedules the code before it and after it
independently. Also, WΧRD pseudo-ops are scheduled like no-ops.

The NΧSCHED pseudo-op disables instruction scheduling (scheduling is enabled
by default); SCHED re-enables it. Branch folding, code copying, and dead code elimina
tion are disabled for instructions that are not scheduled.

SPARC

Once you understand the Plan 9 model for the MIPS, the SPARC is familiar. Regis
ters have numerical names only: R0 through R31. Forget about register windows: Plan
9 doesn�t use them at all. The machine has 32 global registers, period. R1 [sic] is the
stack pointer. R2 is the static base register, with value the address of setSB(SB).
R7 is the return register and also the register holding the first argument to a C (not
Alef) function, again with space reserved at 0(FP). R14 is the loader temporary.

Floating-point registers are exactly as on the MIPS.

The control registers are known by names such as FSR. The instructions to access
these registers are MΧVW instructions, for example

MΧVW Y, R8

for the SPARC instruction

rdy %r8

 7

Move instructions are similar to those on the MIPS: pseudo-operations that turn
into appropriate sequences of sethi instructions, adds, etc. Instructions read from
left to right. Because the arguments are flipped to SUBCC, the condition codes are not
inverted as on the MIPS.

The syntax for the ASI stuff is, for example to move a word from ASI 2:

MΧVW (R7, 2), R8

The syntax for double indexing is

MΧVW (R7+R8), R9

The SPARC�s instruction scheduling is similar to the MIPS�s. The official no-op
instruction is:

ΧRN R0, R0, R0

i960

Registers are numbered R0 through R31. Stack pointer is R29; return register is
R4; static base is R28; it is initialized to the address of setSB(SB). R3 must be zero;
this should be done manually early in execution by

SUBΧ R3, R3

R27 is the loader temporary.

There is no support for floating point.

The Intel calling convention is not supported and cannot be used; use BAL instead.
Instructions are mostly as in the book. The major change is that LΧAD and STΧRE are
both called MΧV. The extension character for MΧV is as in the manual: Χ for ordinal, W
for signed, etc.

i386

The assembler assumes 32-bit protected mode. The register names are SP, AX,
BX, CX, DX, BP, DI, and SI. The stack pointer (not a pseudo-register) is SP and the
return register is AX. There is no physical frame pointer but, as for the MIPS, FP is a
pseudo-register that acts as a frame pointer.

Opcode names are mostly the same as those listed in the Intel manual with an L, W,
or B appended to identify 32-bit, 16-bit, and 8-bit operations. The exceptions are
loads, stores, and conditionals. All load and store opcodes to and from general regis
ters, special registers (such as CR0, CR3, GDTR, IDTR, SS, CS, DS, ES, FS,
and GS) or memory are written as

MΧVx src,dst

where x is L, W, or B. Thus to get AL use a MΧVB instruction. If you need to access AH,
you must mention it explicitly in a MΧVB:

MΧVB AH, BX

There are many examples of illegal moves, for example,

MΧVB BP, DI

that the loader actually implements as pseudo-operations.

The names of conditions in all conditional instructions (J, SET) follow the conven
tions of the 68020 instead of those of the Intel assembler: JΧS, JΧC, JCS, JCC, JEQ,
JNE, JLS, JHI, JMI, JPL, JPS, JPC, JLT, JGE, JLE, and JGT instead of JΧ, JNΧ,
JB, JNB, JZ, JNZ, JBE, JNBE, JS, JNS, JP, JNP, JL, JNL, JLE, and JNLE.

 8

The addressing modes have syntax like AX, (AX), (AX)(BX*4), 10(AX), and
10(AX)(BX*4). The offsets from AX can be replaced by offsets from FP or SB to
access names, for example extern+5(SB)(AX*2).

Other notes: Non-relative JMP and CALL have a * added to the syntax. Only
LΧΧP, LΧΧPEQ, and LΧΧPNE are legal loop instructions. Only REP and REPN are rec
ognized repeaters. These are not prefixes, but rather stand-alone opcodes that precede
the strings, for example

CLD; REP; MΧVSL

Segment override prefixes in MΧD/RM fields are not supported.

AMD64

The assembler assumes 64-bit mode unless a MΧDE pseudo-operation is given:

MΧDE $32

to change to 32-bit mode. The effect is mainly to diagnose instructions that are illegal
in the given mode, but the loader will also assume 32-bit operands and addresses, and
32-bit PC values for call and return. The assembler�s conventions are similar to those
for the 386, above. The architecture provides extra fixed-point registers R8 to R15.
All registers are 64 bit, but instructions access low-order 8, 16 and 32 bits as described
in the processor handbook. For example, MΧVL to AX puts a value in the low-order 32
bits and clears the top 32 bits to zero. Literal operands are limited to signed 32 bit val
ues, which are sign-extended to 64 bits in 64 bit operations; the exception is MΧVQ,
which allows 64-bit literals. The external registers in Plan 9�s C are allocated from R15
down.

There are many new instructions, including the MMX and XMM media instructions,
and conditional move instructions. MMX registers are M0 to M7, and XMM registers are
X0 to X15. As with the 386 instruction names, all new 64-bit integer instructions, and
the MMX and XMM instructions uniformly use L for �long word� (32 bits) and Q for �quad
word� (64 bits). Some instructions use Χ (�octword�) for 128-bit values, where the pro
cessor handbook variously uses Χ or DQ. The assembler also consistently uses PL for
�packed long� in XMM instructions, instead of Q, DQ or PI. Either MΧVL or MΧVQ can be
used to move values to and from control registers, even when the registers might be 64
bits. The assembler often accepts the handbook�s name to ease conversion of existing
code (but remember that the operand order is uniformly source then destination).

C�s long long type is 64 bits, but passed and returned by value, not by refer
ence. More notably, C pointer values are 64 bits, and thus long long and unsigned
long long are the only integer types wide enough to hold a pointer value. The C com
piler and library use the XMM floating-point instructions, not the old 387 ones, although
the latter are implemented by assembler and loader. Unlike the 386, the first integer or
pointer argument is passed in a register, which is BP for an integer or pointer (it can be
referred to in assembly code by the pseudonym RARG). AX holds the return value from
subroutines as before. Floating-point results are returned in X0, although currently the
first floating-point parameter is not passed in a register. All parameters less than 8
bytes in length have 8 byte slots reserved on the stack to preserve alignment and sim
plify variable-length argument list access, including the first parameter when passed in
a register, even though bytes 4 to 7 are not initialized.

Power PC

The Power PC follows the Plan 9 model set by the MIPS and SPARC, not the elabo
rate ABIs. The 32-bit instructions of the 60x and 8xx PowerPC architectures are sup
ported; there is no support for the older POWER instructions. Registers are R0 through
R31. R0 is initialized to zero; this is done by C start up code and assumed by the

 9

compiler and loader. R1 is the stack pointer. R2 is the static base register, with value
the address of setSB(SB). R3 is the return register and also the register holding the
first argument to a C function, with space reserved at 0(FP) as on the MIPS. R31 is
the loader temporary. The external registers in Plan 9�s C are allocated from R30 down.

Floating point registers are called F0 through F31. By convention, several regis
ters are initialized to specific values; this is done by the operating system. F27 must be
initialized to the value 0x4330000080000000 (used by float-to-int conversion), F28
to the value 0.0, F29 to 0.5, F30 to 1.0, and F31 to 2.0.

As on the MIPS and SPARC, the assembler accepts arbitrary literals as operands to
MΧVW, and also to ADD and others where �immediate� variants exist, and the loader gen
erates sequences of addi, addis, oris, etc. as required. The register indirect
addressing modes use the same syntax as the SPARC, including double indexing when
allowed.

The instruction names are generally derived from the Motorola ones, subject to
slight transformation: the �.� marking the setting of condition codes is replaced by CC,
and when the letter �o� represents �OE=1� it is replaced by V. Thus add, addo. and
subfzeo. become ADD, ADDVCC and SUBFZEVCC. As well as the three-operand
conditional branch instruction BC, the assembler provides pseudo-instructions for the
common cases: BEQ, BNE, BGT, BGE, BLT, BLE, BVC, and BVS. The unconditional
branch instruction is BR. Indirect branches use (CTR) or (LR) as target.

Load or store operations are replaced by MΧV variants in the usual way: MΧVW
(move word), MΧVH (move halfword with sign extension), and MΧVB (move byte with
sign extension, a pseudo-instruction), with unsigned variants MΧVHZ and MΧVBZ, and
byte-reversing MΧVWBR and MΧVHBR. �Load or store with update� versions are MΧVWU,
MΧVHU, and MΧVBZU. Load or store multiple is MΧVMW. The exceptions are the string
instructions, which are LSW and STSW, and the reservation instructions lwarx and
stwcx., which are LWAR and STWCCC, all with operands in the usual data-flow order.
Floating-point load or store instructions are FMΧVD, FMΧVDU, FMΧVS, and FMΧVSU.
The register to register move instructions fmr and fmr. are written FMΧVD and
FMΧVDCC.

The assembler knows the commonly used special purpose registers: CR, CTR,
DEC, LR, MSR, and XER. The rest, which are often architecture-dependent, are refer
enced as SPR(n). The segment registers of the 60x series are similarly SEG(n), but
n can also be a register name, as in SEG(R3). Moves between special purpose regis
ters and general purpose ones, when allowed by the architecture, are written as MΧVW,
replacing mfcr, mtcr, mfmsr, mtmsr, mtspr, mfspr, mftb, and many others.

The fields of the condition register CR are referenced as CR(0) through CR(7).
They are used by the MΧVFL (move field) pseudo-instruction, which produces mcrf or
mtcrf. For example:

MΧVFL CR(3), CR(0)
MΧVFL R3, CR(1)
MΧVFL R3, $7, CR

They are also accepted in the conditional branch instruction, for example

BEQ CR(7), label

Fields of the FPSCR are accessed using MΧVFL in a similar way:

MΧVFL FPSCR, F0
MΧVFL F0, FPSCR
MΧVFL F0, $7, FPSCR
MΧVFL $0, FPSCR(3)

producing mffs, mtfsf or mtfsfi, as appropriate.

 10

ARM

The assembler provides access to R0 through R14 and the PC. The stack pointer
is R13, the link register is R14, and the static base register is R12. R0 is the return
register and also the register holding the first argument to a subroutine. The external
registers in Plan 9�s C are allocated from R10 down. R11 is used by the loader as a
temporary register. The assembler supports the CPSR and SPSR registers. It also
knows about coprocessor registers C0 through C15. Floating registers are F0 through
F7, FPSR and FPCR.

As with the other architectures, loads and stores are called MΧV, e.g. MΧVW for
load word or store word, and MΧVM for load or store multiple, depending on the
operands.

Addressing modes are supported by suffixes to the instructions: .IA (increment
after), .IB (increment before), .DA (decrement after), and .DB (decrement before).
These can only be used with the MΧV instructions. The move multiple instruction,
MΧVM, defines a range of registers using brackets, e.g. [R0-R12]. The special MΧVM
addressing mode bits W, U, and P are written in the same manner, for example,
MΧVM.DB.W. A .S suffix allows a MΧVM instruction to access user R13 and R14 when
in another processor mode. Shifts and rotates in addressing modes are supported by
binary operators << (logical left shift), >> (logical right shift), -> (arithmetic right shift),
and @> (rotate right); for example R7>>R2or R2@>2. The assembler does not support
indexing by a shifted expression; only names can be doubly indexed.

Any instruction can be followed by a suffix that makes the instruction conditional:
.EQ, .NE, and so on, as in the ARM manual, with synonyms .HS (for .CS) and .LΧ
(for .CC), for example ADD.NE. Arithmetic and logical instructions can have a .S suf
fix, as ARM allows, to set condition codes.

The syntax of the MCR and MRC coprocessor instructions is largely as in the man
ual, with the usual adjustments. The assembler directly supports only the ARM
floating-point coprocessor operations used by the compiler: CMP, ADD, SUB, MUL, and
DIV, all with F or D suffix selecting single or double precision. Floating-point load or
store become MΧVF and MΧVD. Conversion instructions are also specified by moves:
MΧVWD, MΧVWF, MΧVDW, MΧVWD, MΧVFD, and MΧVDF.

