
Implementation of a Distributed Full-System Simulation Framework as a

Filesystem Server

Phillip Stanley-Marbell

Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

Full-system simulation of systems comprising hundreds of microcontrollers, at the level of in-
struction execution, along with simulation of their peripherals, inter-device communication, power
consumption and the like, can be tasking even on high-end workstations. To enable the partition-
ing of these simulations, which have a high degree of coarse-grained parallelism, over a network of
workstations, a multi-platform simulation environment was implemented using the Inferno system.
The implementation enables the simulation engine, written in ANSI C, and compiled as a library, to
be linked against the Inferno emulator with a custom device driver interface. Using a glue applica-
tion written in Limbo, and harnessing ideas from parallel discrete-event simulation, the framework
enables simulations of networks of embedded systems to be partitioned across workstations of het-
erogeneous architectures. This paper presents the distributed simulation architecture, the design
of the emulator device driver (the interface to the simulation engine), the graphical interface and
glue application, and the packaging of the system as single-binary modules for multiple platforms.
Also presented is a step-by-step guide for developers unfamiliar with Inferno for creating similar
systems.

1. Introduction

Simulators enable the study of systems before their actual construction. In some situations, e.g., when
prototype hardware exists, they are a tool of convenience. When developing new application plat-
forms, in which prototype hardware is either non-existent or not fully understood, simulation becomes
a necessity.

The level of abstraction within simulators vary. For computing systems, simulation may range from
behavioral modeling (e.g., using tools like Matlab/Simulink), and architectural modeling (e.g., SPIM,
the simulators bundled with gdb, or the vi/5i/ki/qi simulators from the Plan 9 compiler suite), to
microarchitectural simulation, modeling motion of instructions through a processor’s pipeline, possible
out-of-order instruction dispatch and execution, all the way down to modeling the system at the level
of transistors.

The simulation framework described in this paper was created as part of the development of a macro-
sensor-electro-mechanical systems (MSEMS) hardware platform (Figure 1). MSEMS are analogous to
micro-electro-mechanical systems (MEMS), which combine integrated circuits and mechanical struc-
tures on the same silicon die, and to sensor networks, which involve multi-modal sensing on multiple
computing nodes. Unlike MEMS, in which electric circuits and mechanical systems are integrated at
the silicon die-level, MSEMS incorporate embedded processors, sensors and mechanical actuators over
a large surface area. In contrast to sensor networks, MSEMS are integrated at high densities into
materials, rather than being placed discretely in their environments.

To enable the study of these systems, the Sunflower full-system simulation environment [10] was de-
veloped. The framework models multiple instances of complete embedded systems, performing archi-
tectural and microarchitectural simulation, power estimation, battery and voltage regulator modeling.
The framework enables the modeling of networks of user-defined topologies between systems, as well
as time- and location-varying analog signals in their environments. The details of the simulation frame-

� �C o m p u t a t i o na n d s e n s i n gS u b s t r a t e m a t e r i a l (e . g . ,p l a s t i c , p a p e r , h u m a n f l e s h)M e c h a n i c a la c t u a t o r C o m m u n i c a t i o ni n t e r c o n n e c t
Figure 1: Illustration of one target hardware platform computationally-animate MSEMS, the simulation
environment is used in the investigation of.

work are presented in [10]. This paper presents the implementation of facilities within the simulation
framework that enable the distribution of simulations across multiple simulation hosts.

The implementation of the simulation framework was structured to enable it to be compiled as a library
for the Inferno operating system [3]. A device driver was implemented within the Inferno emulator (emu),
to present the facilities of each simulation engine as a filesystem interface. A control interface and
simulation glue logic were implemented in the Limbo programming language [8], to enable connection
of the simulation state hosted on different workstations flung across a network, into a single simulation
system. The simulation engine’s state and the device driver interface to it are described in Section 2.,
along with a description of the glue logic and graphical user interface which interacts with the device
driver. The packaging of the simulation framework as a single binary, which combines the simulation
engine, Inferno emulator and the associated filesystem, fonts, etc., is described in Section 3.. The
implementation, which uses the Inferno distribution, is detailed in Section 4.. It is followed by a
brief evaluation of the performance speedup enabled by the distributed simulation framework, when
employing a cluster of five workstations, in Section 5.. We conclude in Section 6. with a summary and
directions for future investigation.

1.1. Terminology

Within the Inferno and Plan 9 operating systems, the hierarchy of entries in the perceived “filesystem”,
visible to programs, either through the operating system facilities, or by direct communication on the
9P [6]/Styx [7] protocols, is referred to as the name space (sometimes as the namespace). Entries
in the name space, which do not represent actual blocks of data on permanent backing store (say,
on disk), are usually referred to as synthetic files. Such synthetic entries in the name space may be
synthesized by user-level programs and are often dynamic in nature. The entries in the name space can
be thought of as having type structure in the sense of programming language type theory. The entries
have a restricted set of types which distinguish between entries without internal structure (files) and
those with internal structure (directories); together, these files and directory entries in the name space
may collectively be referred to as names.

The term device driver in Inferno is used to refer to modules, compiled into the native operating system
or emulator, providing an in-kernel (or in-emulator) interface to some resource, as a hierarchy of names.
The term arises since such modules are traditionally used to provide access to hardware devices, but
they are often also used to provide access to non-hardware resources; for example, in this paper, a
device driver is used to provide access to a library compiled into the emulator (or into a native kernel).

1.2. Related Research

The use of the Inferno operating system emulator for constructing multi-platform applications has
previously been discussed in the literature [9], however there has since been very little activity in this
direction. While the use of Inferno to provide stand-alone applications for host platforms has recently
seen some interest, current implementations [2], do not provide a single binary for the host platform,
but rather, a customized installation archive.

e n g i n e . a t t a c h n a m e /c t li n f on e t i nn e t o u t0 / c t li n f os t d e r rs t d i ns t d o u t
ID = 00000000 Active = 0

PC = 08000000 Tcyc = 1.67E-08
ntrans = 0.00E+00 Ecpu = 0.00E+00

Tcpu = 0.00E+00 ninstrs = 0.00E+00
cputype = SuperH Vdd = 3.30E+00

nicnifcs = 0 nicqintr = 0

P(fail) = 0.00E+00 Max fdur = 0
tripRate = 0 Sim Rate = 0

Throttle = 0 R_active = 0.000000
loc = 0.0,0.0,0.0 sensor0 = 0.00E+00

; bind -a ’#*engine’ /n/remote
; cd /n/remote

; du -a
0 engine.focus.local/0/ctl
0 engine.focus.local/0/info

0 engine.focus.local/0/stderr
0 engine.focus.local/0/stdin

0 engine.focus.local/0/stdout
0 engine.focus.local/0
0 engine.focus.local/ctl

0 engine.focus.local/info
0 engine.focus.local/netin

0 engine.focus.local/netout
0 engine.focus.local

0 .
;
; cd engine.focus.local

; echo newnode msp430 0 0 0 0 0 > ctl
; lc

0/ 1/ ctl info netout netin
;

(a) (b) (c)

Figure 2: (a) hierarchy of entries in the synthetic filesystem interface to the simulation engine device
driver; (b) simulated node’s informational summary returned by a read of its node-specific ctl interface;
(c) interacting with the simulation engine device interface from the Inferno command line.

The motivation for using Inferno as the medium for implementation of multi-platform applications is
usually greatest when these applications execute over a network of computing hosts, i.e., one wishes to
construct what would usually be referred to as distributed applications. The benefit of using Inferno as
an implementation medium is usually due to the ease of interconnecting multiple instances of the native
or emulated Inferno system, and accessing these collections through a single name space. For example,
in the case of the work described in this paper, Inferno is used to facilitate the interconnection of
multiple instances of a microarchitectural simulation engine, into a single distributed simulation engine.

2. Simulation Engine Interface

In the original (console-based) implementation of the Sunflower simulation framework, users interact
with the simulator through a command language. Commands issued through this interface are used
to perform tasks such as instantiating embedded systems with processors from one of the two ISAs
modeled, instantiating network interfaces on those systems, configuring the properties of the interfaces,
and the like. Underlying the interactions with the simulation engine, is the concept of a “current”
system, which receives modal commands. For example, a newnode command will always instantiate a
new processor in the simulation while a dumppipe command will show the contents of the instruction
pipeline for the current node.

The device driver interface to the simulation engine makes the command interface available as a small
structured synthetic file hierarchy, illustrated in Figure 2.(a). At the top-level of the hierarchy are four
files, ctl, info, netin and netout, and at least one numbered directory. The ctl file accepts writes
of any commands in the simulation engine’s command language; when read, it yields a single string
indicating the number of instantiated processors (which could also be determined by a directory read
and counting the numbered directories), as well as an indicator as to which processor is the current
node. The file info can be read for a buffer of recent simulation informational messages (e.g., the
output of a previously issued help command). Messages specific to individual processors are read from
relevant files in the processor’s numbered directory.

The entries netin and netout are interfaces to the simulation engine’s MAC layer network modeling.
A read of netout blocks until a frame is transmitted on any of the possible plurality of modeled
communication links. Likewise, writing an appropriately formatted (as plain text) frame to netin

injects a MAC-layer frame into the simulation engine. These interfaces are used to connect simulated
networks across multiple simulation hosts, as will be detailed in Section 2.1..

The numbered “line directories” contain a similar set of files for interacting with a specific instantiated
processor. Each line directory contains five files: ctl, info, stderr, stdin, and stdout. While modal
commands issued into the top-level ctl interface are always with respect to the engine’s concept of the
“current” node, modal commands issued into the ctl interface of a particular node affect that node
as though it were the current node. Reading the ctl interface yields an abbreviated summary of the
node’s state, shown in Figure 2.(b).

Reading the info interface in a line directory blocks until node-specific simulation messages have been
printed or buffered. Node-specific information includes the response of all modal commands, as well as
node-specific out-of-band messages (e.g., the register file dump printed when a node faults).

To enable the simulation of industry and academic benchmark suites in the absence of an operating
system running over the simulator, the simulation engine intercepts software exceptions corresponding
to system calls in the Newlib C library, enabling most POSIX-compliant applications to be compiled
against Newlib and run directly over the simulator. For such situations, the eponymous interfaces
stdout and stderr can be read for the respective output streams. The interface stdin is currently
defunct, but in the future will enable interactive input to Newlib-linked applications executing over the
simulator.

Figure 2.(c) illustrates interacting with the simulation engine device interface from the Inferno command
line; in practice however, the graphical user interface provides an additional abstraction layer over this
low-level interface.

2.1. Engine Glue Logic and User Interface

The use model of the Sunflower simulation infrastructure is for simulating large networks consisting of
tens to hundreds of complete embedded systems. This is a tall order even for high-end workstations. The
goal of the interface described in the previous section, was to enable a single simulation, composed of,
say, one hundred simulated nodes on a single simulated network, to be split across multiple workstations
(simulation hosts).

The simulation task is inherently parallel, since groups of instantiated processors in the simulation can
be hosted on different simulation hosts. Unfortunately, the task is not quite so trivial: the nodes within
a simulation interact via frames transmitted on one or more of the simulated communication media,
and the destination of a transmitted frame within a simulation may not be on the same simulation
host. The utility of implementing the interface to the simulation engine as a filesystem thus becomes
evident, since filesystems across multiple Inferno hosts are easily combined into a single name space.

For simulation of a single network of systems over a cluster of simulation hosts, a simulation configu-
ration is split into n pieces, each of which is loaded onto a simulation engine on one of n simulation
hosts. The list of simulation hosts is provided to the glue logic, which serves two purposes. First,
it interconnects the simulated networks of all the simulation hosts, using a set of threads to create a
fully connected graph of all the simulation host netin and netout interfaces. Second, it ensures that
the passage of time on the different simulation hosts is coherent. The latter is important since the
simulation hosts might have different simulation rates — it is possible for the nodes being simulated
on one simulation host to be “ahead” (or to lag) those on other simulation hosts, in terms of simu-
lated (virtual) time. This is troublesome, since it breaks the notion of a single simulation time used to
schedule events in the simulated system. These issues are well known in the area of parallel discrete
event simulation [5]. The simulation glue employs two methods that can be activated separately or in
concert by a user.

The first synchronization technique involves monitoring the simulation rates on all the simulation hosts
connected to the glue interface, and issuing commands to their ctl interfaces to throttle the simulation
speeds of hosts that are too far ahead in time. The glue interface determines the simulation rates by
reading the per-node ctl interfaces described in the previous section and in Figure 2.(b), calculating
an appropriate throttle factor, and issuing a throttle command to the top-level interface on the
appropriate simulation hosts. The frequency with which this rate-synchronization occurs is specified
through the GUI.

The second synchronization technique accounts for skew in the simulated times, separate from any

difference in the simulation rates. The implementation is similar, periodically calculating an appropriate
pause to be issued to leading hosts, and issuing the command through the same interface. In practice,
the skew synchronization is run at a very low period, e.g., once per five wall-clock minutes of simulation,
whereas the rate synchronization re-calculates the throttle factors every minute.

It is necessary to continually monitor simulation rates and skews since, with variation of the simulated
applications behavior, the simulation rate may fluctuate over time. For example, in phases of a simulated
application binary where it engages in more MAC-layer communication, the simulation engine does more
work to perform the modeling of these MAC-layer communications, and simulation proceeds more slowly.

C o m m a n d i n p u tL i s t o fc o n n e c t e d l o c a la n d r e m o t es i m u l a t i o ne n g i n e s
M e s s a g e o u t p u tw i n d o w , d i s p l a y su p d a t e d o u t p u tf r o m t h e c u r r e n tn o d e ' s i n f o ,s t d o u t a n d s t d e r r

P u l l L d o w n m e n u w i t hs h o r t c u t s f o rc o m m o n c o m m a n d s

B u t t o n s h o r t c u t s f o rc o m m o n c o m m a n d s
E a c h n o d e i n t h es i m u l a t i o n i s r e p r e s e n t e dw i t h a c l i c k a b l e r e g i o n ;c l i c k i n g o n a n o d e m a k e si t t h e c u r r e n tS u m m a r y o f s o m es t a t i s t i c s f o r c u r r e n t n o d e

N o t a t i o n n o d e n u m b e r @h o s t n u m b e r i s u s e d t ov i s u a l l y d e p i c t w h i c hn o d e s a r e o n w h i c hs i m u l a t i o n h o s tW a r n i n g m e s s a g e sE r r o r m e s s a g e s
Figure 3: Illustration of the GUI.

2.2. The Graphical User Interface (GUI)

The graphical user interface was implemented to tie together facilities for connecting to remote simu-
lation hosts, interfacing with the simulation glue logic, and interacting with a local simulation engine.
The GUI was implemented in Limbo, using a combination of the Limbo/Tk toolkit and a graphics
library developed in-house. A screen capture of the GUI, interfaced to a simulation with twenty-four
simulated systems, split over five simulation hosts, is shown in Figure 3.

Four classes of commands can be entered at the GUI’s command line. The GUI implements a small set
of commands, mostly for configuring the glue logic facilities. Any command not in this set is assumed
by the GUI to be a command from the simulation engine’s command language, and is passed to the
appropriate ctl interface in the simulation engine filesystem. The third class of commands are any
commands preceded with a ’!’; these are interpreted as names of Limbo programs, and are executed
using the Inferno shell. Using the Inferno os utility, a fourth set of commands, i.e. any command from
the host operating system, can also be entered at the GUI interface. Thus, for example, ”ps” is a
modal command in the simulator command language that lists the power consumption statistics of the
currently selected node, ”!ps” can be used to list the Dis VM threads running within the GUI, and

1 dev

2 root

3 cons

4 env

5 mnt

6 pipe

7 prog

8 srv

9 dup

10 fs

11 cmd cmd

12 draw

13 pointer

14 snarf

15 ip ipif ipaux

16 mem

17 dustydeck

18 lib

19 dustydeck

20 interp

21 tk

22 math

23 draw

24 memlayer

25 memdraw

26 keyring

27 sec

28 mp

29 9

30 link

31
32 mod

33 sys

34 draw

35 tk

36 math

37 srv srv

38 keyring

39 loader

40

41
42
43 port

44 alloc

45 cache

46 chan

47 dev

48 dial

49 dis

50 discall

51 env

52 error

53 errstr

54 exception

55 exportfs

56 inferno

57 latin1

58 main

59 parse

60 pgrp

61 print

62 proc

63 qio

64 random

65 sysfile

66 uqid

67
68 code

69
70 init

71 emuinit

72
73 root

74 /dev /

75 /fd /

76 /prog /

77 /net /

78 /chan /

79 /env /

Figure 4: A skeletal emulator configuration file, with entries added to cause the incorporation of the
dustydeck library and device driver.

”!os ps” can be used to list host operating system processes. The outputs of all of these commands
are displayed in the GUI’s message window.

3. Multi-Platform Packaging

In making the simulation framework available across multiple platforms, the goal was to distribute
a single executable that users would execute just like a standard application binary on the target
platform, without having to install the Inferno distribution (whether manually or automatically initiated).
Implementing the interface to the simulation engine using Inferno had the significant benefit of shielding
the implementation efforts from the details of multiple host platforms and their tools. For example,
without any prior background in the details of the Windows API, it is possible to distribute a stand-alone
windows application (a single ”.exe” file that can be executed to launch the simulator), that behaves
identically to releases on other platforms, e.g., MacOS, Linux and Solaris. These binaries are essentially
customized versions of the Inferno emulator, emu, with the simulation engine compiled in as a device
driver, and with the Limbo application executing at startup being the simulation glue logic and GUI.
The GUI was implemented such that it managed its own windows, and could thus run without the
Inferno window manager, taking up the whole screen real-estate (as can be see in Figure 3).

4. Implementation

The following provides an overview of the general implementation technique; the description is intended
to be sufficiently detailed to enable a developer unfamiliar with the Inferno environment to implement
a framework using a similar approach, with a little background reading.

4.1. Obtaining the Inferno source distribution

The Inferno distribution, comprising the sources and pre-compiled binaries for the Inferno emulator,
the native Inferno operating system, the Dis virtual machine, the Limbo compiler, Inferno applications
and development tools and host OS tools, can be obtained from http://www.vitanuova.com. The
documents therein provide sufficient information to unpack and install the distribution.

4.2. Preparation

The general basis of the approach is to take an existing application implemented in C, and to compile
it as a library, to be linked against the Inferno emulator. Typically, this implementation is placed in
a directory with the lib prefix (not just a convention, but required by the structure of the emulator
build configuration mechanisms), at the top level of the Inferno distribution. There is no need to tailor
this library implementation in any way, other than possible changes to identifiers required to remove

1 <../mkconfig

2

3 LIB=libdustydeck.a

4

5 OFILES=\
6 main.$O\

7 dustydeck.$O\
8

9 HFILES=\
10 dustydeck.h\

11

12 <$ROOT/mkfiles/mksyslib-$SHELLTYPE
13

14 CFLAGS = $CFLAGS -I. -c

Figure 5: A skeletal library mkfile.

conflicts with symbols in other object files in the emulator implementation. The linking of the library
against the emulator is specified by adding an entry to the emulator configuration file, emu, a plain-text
file located at /emu/$PLATFORM/emu (Figure 4), where $PLATFORM is a platform string such as Plan9
or MacOSX. In doing so, the entry added is the tail of the name the library directory (excluding the
required lib prefix described above). A template mkfile that can be used as a basis for the mkfile in
the new library’s directory is illustrated in Figure 5.

The interface between the Inferno system and the body of C code is provided by implementing a very
simple device driver (easily under a hundred lines of C code). It is through interaction with the interfaces
presented by this simple device driver that functions in the compiled library are accessed. One design
challenge is to determine an appropriate interface (single entry in the name space, multiple entries, a
hierarchy, or a combination of all the above in a dynamic hierarchy). A skeletal implementation of a
device driver is illustrated in Figure 6.

The source for the device driver is by convention placed in the /emu/$PLATFORM/ directory if it is
specific to a given host operating system, or in the /emu/port/ directory otherwise. The device driver
is typically implemented in a single file (auxillary routines may exist in libraries), and this file name must
begin with the prefix dev, due to the structuring of the emulator build configuration file; an entry must
be added to the build config file, in its dev dection, for the tail of the name (i.e., excluding the dev

prefix).

4.3. A step-by-step guide

Assuming an instance of the Inferno distribution is located in /usr/inferno, the steps involved in
taking an existing body of C code and compiling it as a device driver named dustydeck are as follows:

1. Make sure that the Inferno tools for your host platform are accessible in your path. For example,
on the MacOS platform, these tools will reside in /usr/inferno/MacOSX/power/bin, so that
directory should be added to your path.

2. Create the directory libdustydeck in the root of the Inferno source tree. In this directory, place
the source files for the C application being ported.

3. Edit the mkfile for the host platform emu build, e.g., /usr/inferno/emu/MacOSX/mkfile on
the Mac OS X platform, if necessary.

4. Create a mkfile in /usr/inferno/libdustydeck, using, e.g., the example in Fig-
ure 5 as a template. If all is well, you should be able to type mk in the directory
/usr/inferno/libdustydeck, resulting in the C code being compiled, and a library archive
being placed at /usr/inferno/MacOSX/power/lib/libdustydeck.a.

5. Create the skeletal device driver interface, devdustydeck.c, (illustrated in Figure 6) in the host
platform emu portable source file directory, /usr/inferno/emu/port.

1 #include "dat.h"

2 #include "fns.h"

3 #include "error.h"

4 #include <interp.h>

5 #include "image.h"

6 #include <memimage.h>

7 #include <memlayer.h>

8 #include <cursor.h>

9

10 enum {Qdir, Qdustydeck};

11 static Dirtab dustydeckdirtab[]={"dustydeck", {Qdustydeck, 0}, 0, 0600};

12

13 static Chan*

14 dustydeckattach(char* spec) {

15 return devattach(’+’, spec);

16 }

17

18 static int

19 dustydeckwalk(Chan* c, char* name) {

20 return devwalk(c, name, dustydeckdirtab, nelem(dustydeckdirtab), devgen);

21 }

22

23 static void dustydeckstat(Chan* c, char* db) {

24 devstat(c, db, dustydeckdirtab, nelem(dustydeckdirtab), devgen);

25 }

26

27 static Chan*

28 dustydeckopen(Chan* c, int omode){

29 return devopen(c, omode, dustydeckdirtab, nelem(dustydeckdirtab), devgen);

30 }

31

32 static void

33 dustydeckclose(Chan* c) {

34 return;

35 }

36

37 static long

38 dustydeckread(Chan* c, void* a, long n, vlong offset) {

39 return n;

40 }

41

42 static long

43 dustydeckwrite(Chan *c, void* a, long n, vlong offset) {

44 USED(c); USED(a); USED(n); USED(offset); error(Ebadusefd);

45 return 0;

46 }

47

48 Dev dustydeckdevtab = {

49 ’+’, "dustydeck", devinit, dustydeckattach, devclone, dustydeckwalk,

50 dustydeckstat, dustydeckopen, devcreate, dustydeckclose, dustydeckread,

51 devbread, dustydeckwrite, devbwrite, devremove, devwstat

52 };

Figure 6: A skeletal implementation of the emulator device driver interface.

Figure 7: A five PC cluster over which the distributed simulation infrastructure was deployed.

6. Edit the emulator build configuration file (illustrated in Figure 4) for your host platform, adding
two new lines (1) to indicate that the library libdustydeck.a should be linked into the emulator
build, and (2) that the device driver interface devdustydeck.c should be compiled and linked
in. Both entries are just the string "dustydeck", in the dev and lib sections of the emulator
configuration file.

7. Run mk in the emu build directory for your host platform, e.g., in /usr/inferno/emu/MacOSX/.

If all goes well, the binary o.emu is generated. This modified form of the emulator has the C library
dustydeck compiled in, and accessible from above the Dis virtual machine through the device driver’s
interface.

4.4. Integrating the Sunflower simulation engine

The modifications to the emulator configuration file involve adding new entries to the dev and lib

sections for the simulation engine device driver and library respectively. The root in-memory filesystem
section was also modified to include all the files needed by the GUI, along with several useful utilities,
such as ps, cat, and webgrab; these utilities can be accessed from the simulator GUI command
interface, as described previously. New functionality can be added to the GUI by including new Dis
executables in the build image, or even by accessing executables over the network at runtime, providing
many of the benefits of a “plug-in” architecture without the usual ugliness of plug-ins.

5. Evaluation

The distributed simulation framework was deployed on a cluster of five Pentium III 933MHz PCs, shown
in Figure 7. The PCs have 100Mbit Ethernet interfaces, and are connected through a Netgear GS105
Gigabit Ethernet switch. A sixth PC is employed to run the GUI and glue logic interface.

When simulating networks of processors, the performance of the distributed simulation depends on the
amount of communication between simulated nodes, and on the speed of the interconnect between
simulation hosts. In the following evaluation, the framework is used to perform microarchitectural
simulation with power estimation, battery, network and analog signal modeling, for an object tracking
/ sensor aggregation application [4]. With the entire simulation of twenty-four simulated nodes running
on a single one of the employed host workstations, instruction execution is performed at a rate of 100K
simulated clock cycles per second. On a single Pentium 4 3GHz, the simulation rate for the simulated
network of twenty-four systems is 200K simulated clock cycles per host second.

Figure 8(a) shows the trend in simulation speedup when a single simulation is split across multiple
hosts. In Figure 8, the speedup is shown for a setup in which the central simulation controller is
actively monitoring simulation rate on the simulation hosts, but with neither synchronization of time
or rate, nor communication between the simulation hosts. This represents the best case behavior of

(a) Speedup with added simulation hosts. (b) Effect of synchronisation technique.

Figure 8: Performance of distributed simulation facilities in Sunflower. The speedup from partitioned
simulation without synchronization or communication, but with central simulation controller polling
simulation hosts for statistics is shown in (a). The effect of different synchronization techniques on
simulation speed is shown in (b).

benchmark applications running over the simulator. In practice however, the communication patterns
exhibited by different applications will influence the observed simulation speedup.

The rate equalization technique incurs the smallest overhead, and when combined with a one-time
time synchronization, provides the best solution (eqrateproc, top two bars in Figure 8(b)). When
using repeated time synchronization (eqtimeproc a b in Figure 8(b), with a being the periodicity in ms
and b the maximum skew on the simulated machine in ms), performance is degraded by the repeated
pausing of simulation. These evaluations, although rudimentary, are promising. An immediate are for
improvement is the implementation of the time-synchronisation facilities.

6. Summary and Future Work

Full-system simulation of systems comprising hundreds of microcontrollers, at the level of instruction
execution, along with simulation of their peripherals, inter-device communication, power consumption
and the like, can be tasking even on high-end workstations. Such simulations however have a high
degree of coarse-grained parallelism, and may be partitioned over a network of workstations.

Presented in this paper were facilities for performing such partitioning of a simulation engine, imple-
menting a multi-platform simulation environment using Inferno. The simulation engine, written in
ANSI C, is compiled as a library, and linked against the Inferno emulator, with a custom device driver
serving as interface to the simulation engine. Using a glue application written in Limbo, and harnessing
ideas from parallel discrete-event simulation, the implementation enables simulations of networks of
embedded systems to be partitioned across workstations of heterogeneous architectures. Presented was
the distributed simulation architecture, the design of the emulator device driver (the interface to the
simulation engine), the graphical interface and glue application, and the packaging of the system as
single-binary modules for multiple platforms. To enable developers unfamiliar with Inferno to create
similar systems, a step-by-step implementation guide was also presented.

Alongside improvements in the implementation of the time-synchronisation facilities, the integration of
support for the Amazon EC2 [1] pay-per-compute service is being implemented. This will enable the
investigation of larger-scale simulation distributions than the small five-host cluster presented herein.

References

[1] Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2,
2006.

[2] C. Jones. ACME Stand-Alone Complex (SAC). http://code.google.com/p/acme-sac, 2006.

[3] S. M. Dorward, R. Pike, D. L. Presotto, D. M. Ritchie, H. Trickey, and P. Winterbottom. The
Inferno operating system. Bell Labs Technical Journal, 2(1):5–18, Winter 1997.

[4] Q. Fang, F. Zhao, and L. Guibas. Lightweight sensing and communication protocols for target
enumeration and aggregation. In Proceedings of the 4th ACM international symposium on Mobile
ad hoc networking & computing, pages 165–176. ACM Press, 2003.

[5] R. M. Fujimoto. Parallel discrete event simulation. Commun. ACM, 33(10):30–53, 1990.

[6] Plan 9 File Protocol, 9P. Plan 9 4th Edition Programmers Manual, Section 5. Lucent Technologies,
Murray Hill, NJ, Apr. 2002.

[7] D. Ritchie and R. Pike. The Styx architecture for distributed systems. Bell Labs Technical Journal,
4(2):146–152, 1999.

[8] D. M. Ritchie. The Limbo programming language. In Inferno 3rd Edition Programmer’s Manual,
Volume 2. Vita Nuova Holdings Ltd., 2000.

[9] R. Sharma. Distributed application development with Inferno. In Proceedings of the 36th Design
Automation Conference (DAC’ 99), pages 146–150, June 1999.

[10] P. Stanley-Marbell and D. Marculescu. Sunflower: Full-System, Embedded Microarchitecture Eval-
uation. 2nd European conference on High Performance Embedded Architectures and Computers
(HiPEAC 2007) / Lecture Notes on Computer Science, 4367:168–182, 2007.

	Introduction
	Terminology
	Related Research

	Simulation Engine Interface
	Engine Glue Logic and User Interface
	The Graphical User Interface (GUI)

	Multi-Platform Packaging
	Implementation
	Obtaining the Inferno source distribution
	Preparation
	A step-by-step guide
	Integrating the Sunflower simulation engine

	Evaluation
	Summary and Future Work
	References

