

Richard Miller

r.miller@acm.org

A Plan 9 C Compiler for
RISC-V RV32GC and RV64GC

19 October 2020

Plan 9 C compiler

- written by Ken Thompson for Plan 9 OS

- used for Inferno Operating System

- kernel and limbo VM built with Plan 9 C

- used to bootstrap the Go language

- releases up to go1.4 included Plan 9 C
 compilers, to build Go compiler and runtime

- useful for embedded “bare metal” programming

- small lib9 runtime library: strings, formatted
 printing, qsort, synchronisation, ...

Plan 9 C language

- originally ANSI standard C89 (with some small
extensions)

- some of C99 added (long long, // comments,
compound literals, mixed code and declarations)

- no inline functions or inline assembly code

- keywords register, const and volatile
are ignored (except for extern register)

- all nonlocal data is treated as volatile, which
 simplifies embedded and OS code

C is not a high level language

- C was created in an era when normal practice
was to write operating systems, compilers and
runtime libraries in assembly language, for a
specific computer architecture.

- (Re)writing UNIX in C had the effect of making it
largely portable, while keeping the language
close to the hardware model so efficiency of
code would be clear by inspection.

- The language should make it easy for
programmers to optimise their code, not try to do
it for them.

Example

- a timing delay loop, observed in an embedded
program (trickery prevents gcc from deleting it all):

 for (int i = 0; i < 1000000; i++)
 asm volatile ("" ::: "memory");

- with the Plan 9 compiler it’s simpler:

 for (int i = 0; i < 1000000; i++);

A C compiler need not be huge

- source code is kilobytes, not gigabytes

- ARM version compiles itself on a Raspberry Pi 4
in 1.8 seconds

 303 acid.c 1561 lex.c
 89 bits.c 686 lexbody
 782 cc.h 3 mac.c
 1183 cc.y 856 macbody
 1462 com.c 8 omachcap.c
 619 com64.c 591 pgen.c
 79 compat 268 pickle.c
 47 compat.c 199 pswt.c
 1636 dcl.c 606 scon.c
 494 dpchk.c 2032 sub.c
 400 funct.c 13904 total

Compiler source lines – machine
independent part

 1207 cgen.c
 117 enam.c
 336 gc.h
 220 i.out.h
 230 list.c
 9 machcap.c
 608 mul.c
 706 peep.c
 1160 reg.c
 240 sgen.c
 612 swt.c
 1473 txt.c
 6918 total

Compiler source lines – RISC-V
specific part

 966 asm.c
 56 compat.c
 269 compress.c
 360 l.h
 252 list.c
 338 noop.c
 1510 obj.c
 194 optab.c
 589 pass.c
 525 span.c
 5059 total

RISC-V linker source lines

 182 a.h
 505 a.y
 641 lex.c
 1328 total

RISC-V assembler source lines

Plan 9 began as a networked OS for
multiple architectures

Plan 9 2nd edition had compilers for:
 3210 386 68020 960 mips sparc

By the 4th edition, also included were:
 29000 68000 alpha amd64 arm power

Community contributions continue:
 arm64 sparc64 power64 nios2 ... et al

Machines of different types run from
the same server root filesystem

- $cputype : host machine type (set at login)
- $objtype : target machine type for compilers

 (defaults to be the same as $cputype)
- At login, directories with appropriate executable

files are bound into the local view of /bin :
bind /$cputype/bin /bin
bind -a $home/$cputype/bin /bin

 along with shell scripts (machine independent)
bind -a /rc/bin /bin

Every Plan 9 compiler is a cross-
compiler

- The normal case is to build for multiple targets in
the same source directory (perhaps even
simultaneously)

- To name every C compiler cc and every object
code file something.o would be confusing

- Plan 9 naming conventions help to keep track of
different architectures

Architecture names, tools and
suffixes

 compiler assembler linker object binary

arm 5c 5a 5l *.5 5.out
386 8c 8a 8l *.8 8.out
amd64 6c 6a 6l *.6 6.out
power qc qa ql *.q q.out
mips vc va vl *.v v.out
riscv ic ia il *.i i.out
riscv64 jc ja jl *.j j.out
... and so on

Using the tools

To compile prog.c for ARM and RISCV:

5c prog.c && 5l prog.5

ic prog.c && il prog.i

To install the resulting binaries:

mv 5.out $home/bin/arm/prog

mv i.out $home/bin/riscv/prog

Mkfiles abstract the details

- In practice, the compiler and linker are not
invoked directly, but by using mk (the Plan 9
equivalent of make) which uses simple rules in a
mkfile to select tools for the right architecture:

- To compile, link and install for current $cputype

mk prog.install

- To compile, link and install for riscv64

objtype=riscv64 mk prog.install

For more information

- How to Use the Plan 9 C Compiler, Rob Pike

https://plan9.io/sys/doc/comp.pdf

- A Manual for the Plan 9 Assembler, Rob Pike

https://9p.io/sys/doc/asm.pdf

- Maintaining Files on Plan 9 with mk, Andrew Hume
and Bob Flandrena

https://9p.io/sys/doc/mk.pdf

https://plan9.io/sys/doc/comp.pdf
https://9p.io/sys/doc/asm.pdf
https://9p.io/sys/doc/mk.pdf

Re-targeting the tools to RISC-V

- The complete compilation toolchain consists of:

- C compiler

- linker

- assembler

- libc and other libraries

- object code utilities (ar, nm, size, prof, strip)

- debuggers (db, acid)

1 – writing a disassembler function

- part of libmach (object code handling library)

 das(Map *map, uvlong pc, char *buf, int n)

- translation of binary instructions to assembly text

- requires thorough study of ISA specification

 - a good way to learn machine characteristics

- can be used later to debug machine code
generation in the linker

2 – and a few other libmach functions
- low level functions to handle machine code,

either within object files, or on the memory of
running processes on Plan 9

- parse headers

- insert breakpoints

- trace back through the call stack

- read and write machine registers

- using libmach to encapsulate machine
dependencies makes all utilities and debuggers
completely portable: one program handles all
architectures

3 – creating an assembler

- Plan 9 asm syntax is similar for all architectures

- but different from the vendors’ assemblers

- output is a binary file of abstract object code

- slightly higher level than machine code

- linker will translate each object instruction to one
or more actual machine instructions

- compiler produces the same abstract object
code format as the assembler

 A simple example:

assembly / object code (same for arm, 386 etc)
MOVB R10, label(SB)

machine instruction (if label is close to the static
base address SB)

sb x10, N(x3)

machine instructions (if label is far from SB)

lui %hi(N), x4
add x4, x4, x3
sb x10, %lo(N)(x4)

 - note: the final address of label is only known at
link time (it may even be defined in another C
source file)

- only the linker has enough information to select
the best instruction sequence

- in some other linkers, this is called relaxation

- post-compile relaxation requires the linker to
decode machine instructions and recognise
sequences that can be rewritten

- Plan 9 compiler makes this simpler by passing
higher level abstract object code to the linker

- assembler syntax is defined by a yacc grammar

- easily adapted from the assembler for another,
 similar ISA (in this case, MIPS)

- most of the work is choosing the set of abstract
 opcodes: balance between needs of

- C compiler (code generation) and

- linker (instruction selection)

4 – retargeting the linker

- a separate linker exists for each architecture
- much code is common for all versions (eg
 symbol table handling, removing redundant
 branches and dead code)
- instruction selection is driven by a table, indexed
 by opcode and types of operands
- must create the table, write routines to translate
 each opcode/operand pattern into machine code
 instruction(s)
- check: assemble and link code, disassemble
 binary output with debugger, should match the
 original source

5 – retargeting the C compiler

- only need to look at the 12 source files with
 architecture dependent functions

- generating abstract object code instead of
 actual machine instructions means less variation
 between compilers

- start with similar ISA (MIPS) and adapt

6 – runtime libraries

- a small set of assembly routines are needed for
functions which can’t be expressed in C

 - eg setjmp/longjmp, tas

 - 64-bit add/subtract with carry for RV32

- some other functions can begin as portable C,
rewritten in assembly as needed for efficiency

- eg memcpy, strcmp

- other 64-bit arithmetic and conversions

- most of lb9 / libc and other library source is
 machine independent

7 - testing
- initial test platform: Claire Wolf’s PicoRV32 on

an ICE40 FPGA (myStorm BlackIce board)

- compiled RISC-V binaries are run on bare metal,
using Russ Cox’s standalone lib9pclient to
connect to a 9p server via serial port

1. compile a minimal hello.c program, confirm that
it runs on PicoRV32

2. compile ic using /bin/arm/ic, run the result on
PicoRV32 to comfirm that it compiles hello.c

3. compile ic source files using /bin/riscv/ic on
PicoRV32, confirm the object code matches

- the test hardware didn’t have enough RAM to
run the Plan 9 linker, so unable to run a full
compiler bootstrap

- for larger scale testing of RISC-V binaries,
switched to using Fabrice Bellard’s tinyemu
RISC-V emulator (ported to run on Plan 9 host)

8 – adding instruction set extensions

- initial toolchain supported only base RV32IM
(sufficient to compile the compiler through itself)

- added other extensions one by one, repeating
same development steps (disassembler,
assembler, linker, compiler, testing)

- floating point (single and double), compressed
instructions, 64-bit instructions

- as of October 2020, toolchain supports RV32GC
and RV64GC (extensions IMAFDC)

